Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Biomed Pharmacother ; 148: 112753, 2022 04.
Article En | MEDLINE | ID: mdl-35272139

COVID-19 is a lethal disease caused by the pandemic SARS-CoV-2, which continues to be a public health threat. COVID-19 is principally a respiratory disease and is often associated with sputum retention and cytokine storm, for which there are limited therapeutic options. In this regard, we evaluated the use of BromAc®, a combination of Bromelain and Acetylcysteine (NAC). Both drugs present mucolytic effect and have been studied to treat COVID-19. Therefore, we sought to examine the mucolytic and anti-inflammatory effect of BromAc® in tracheal aspirate samples from critically ill COVID-19 patients requiring mechanical ventilation. METHOD: Tracheal aspirate samples from COVID-19 patients were collected following next of kin consent and mucolysis, rheometry and cytokine analysis using Luminex kit was performed. RESULTS: BromAc® displayed a robust mucolytic effect in a dose dependent manner on COVID-19 sputum ex vivo. BromAc® showed anti-inflammatory activity, reducing the action of cytokine storm, chemokines including MIP-1alpha, CXCL8, MIP-1b, MCP-1 and IP-10, and regulatory cytokines IL-5, IL-10, IL-13 IL-1Ra and total reduction for IL-9 compared to NAC alone and control. BromAc® acted on IL-6, demonstrating a reduction in G-CSF and VEGF-D at concentrations of 125 and 250 µg. CONCLUSION: These results indicate robust mucolytic and anti-inflammatory effect of BromAc® ex vivo in tracheal aspirates from critically ill COVID-19 patients, indicating its potential to be further assessed as pharmacological treatment for COVID-19.


Acetylcysteine/pharmacology , Bromelains/pharmacology , COVID-19/pathology , Chemokines/drug effects , Cytokines/drug effects , Sputum/cytology , Acetylcysteine/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Bromelains/administration & dosage , Cytokine Release Syndrome/pathology , Dose-Response Relationship, Drug , Down-Regulation , Drug Combinations , Expectorants/pharmacology , Female , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Respiration, Artificial , Rheology , SARS-CoV-2 , Trachea/pathology , Young Adult
2.
J Basic Microbiol ; 43(3): 202-9, 2003.
Article En | MEDLINE | ID: mdl-12761771

An evaluation of the efficiency of treatment of kraft mill foul condensates in a membrane bioreactor was carried out in the laboratory. Efficiency and rate of methanol removal were quantified at operating temperatures of 35, 45 and 55 degrees C. The structure of the bacterial community present in the reactor biomass at the different operating temperatures was evaluated by in situ hybridization of the biomass samples with fluorescently-labelled probes (FISH) targeting the Eubacteria, the alpha, beta and gamma subclasses of the Proteobacteria, the low G + C content Gram-positive bacteria (Bacillus spp.), while community function was evaluated by in situ hybridization with a methanol dehydrogenase gene (mxaF) probe. Methanol removal efficiency decreased from 99.4 to 92%, and removal rate from 2.69 mg MeOH/l x min to 2.49 mg MeOH/l x min when the operating temperature was increased from 35 to 55 degrees C. This decrease in methanol removal was accompanied by a decrease (from 58% to 42%) in the relative proportion of cells that hybridized with the mxaF probe. The relative proportion of Bacillus spp. increased from 5 to 20% while the proportion of members of the alpha subclass of Proteobacteria decreased from 16% to 6% when the bioreactor operating temperature was raised from 35 to 55 degrees C. The relative proportions of bacteria belonging to the beta (22-25%) and gamma (18-20%) subclasses of the Proteobacteria remained relatively constant regardless of operating temperature. Proteobacteria (alpha, beta and gamma subclasses) and Bacillus spp. represented 61, 67 and 71% of the Eubacteria in the biomass sampled at 35, 45 and 55 degrees C, respectively. The FISH technique was shown to be an efficient method for detection of both structural and functional changes in the bacterial communities that could be related to efficiency of methanol removal in a membrane bioreactor operating at different temperatures.


Alcohol Oxidoreductases/genetics , Bacteria/isolation & purification , Bioreactors/microbiology , In Situ Hybridization, Fluorescence , Industrial Microbiology , RNA, Ribosomal/analysis , Bacteria/classification , Bacteria/genetics , Betaproteobacteria/isolation & purification , Biomass , Colony Count, Microbial , DNA, Bacterial/genetics , Eubacterium/isolation & purification , Membranes, Artificial , Methanol/metabolism , Models, Structural , Oligonucleotide Probes/chemistry , Temperature
3.
Braz. j. microbiol ; 31(1): 61-66, jan.-mar. 2000. tab, graf
Article En | LILACS | ID: lil-306369

Different encapsulation matrices were tested for immobilized cells of Candida guillermondii UFMG-Y65 used for acetonitrile degradation. Acetonitrile degradation by free cells and cells immobilized in Ba-alginate, k-carrageenan and citric pectin was studied. The rate of acetonitrile degradation was monitored for 120h by measuring yeast growth and ammonia concentration. Different alginate concentrations did not affect cell viability, but the period of incubation in BaCl(2) solution reduced the number of viable cells. Likewise, the gel nature and the matrix structure of the support resulting from the cell immobilization conditions were of fundamental importance for biocatalyst activity and performance, affecting substantially the patterns of microbial growth and enzymatic activity. Alginate-immobilized cells degraded acetonitrile more efficiently than k-carrageenan or citric pectin-immobilized cells.


Acetonitriles , Candida , Clinical Enzyme Tests , In Vitro Techniques , Yeasts , Biodegradation, Environmental
...